

Energy and Carbon Calculator for

Homes Technical Overview

ECCHO Technical Overview v1.0

 Page 2 of 51

Introduction

At NZGBC, we want New Zealanders to have better performing homes and this means that

the design of a house is critical. The Energy and Carbon Calculator for Homes (ECCHO) is

a digital online method enabling calculation of the overall heating and cooling demands of

a home, together with overall energy (fuel) consumption and carbon emissions based on

space heating and hot water systems, lighting, plug loads and refrigerant losses.

The ECCHO modelling methodology is not intended to provide all the answers when

designing homes – but this overview provides information about how calculations in

ECCHO are performed and aims to help ECCHO users understand the methods and

limitations of the ECCHO model. Knowing more about ‘what’s under the hood’ can increase

users’ understanding of the principles underpinning ECCHO and what factors are

important to consider when designing homes. It also means home designers can better

understand whether ECCHO is suitable for their project. For example, ECCHO cannot

calculate dynamic or zonal effects so it can’t be used to solve those types of issues for

instance, when a house is at risk of overheating only in the afternoon or only on the western

side.

ECCHO can be used in conjunction with Homestar to meet v5 requirements and

help create a comfortable, healthier, more energy efficient home.

In creating, ECCHO, NZGBC relied on the same conventions and methods as the Passive

House Institute’s Passive House Planning Package (PHPP) (version 9.6a), Excel-based

energy modelling software. NZGBC created ECCHO to be an advanced digital online

methodology (written in Python) and is independent of PHPP. The Python code summaries

in the final appendix, will allow developers to better maintain ECCHO into the future.

Results from any ECCHO calculations should be interpreted by professionals who

understand how to use the model, and it is recommended that ECCHO is used in

conjunction with other home design and construction methodologies. All diagrams in this

overview are illustrative only.

For more information about ECCHO, please contact homestar@nzgbc.org.nz

ECCHO Technical Overview v1.0

 Page 3 of 51

This overview has been co-authored by Sam Archer and Jason Quinn of Sustainable

Engineering Ltd. Sam is the Director of Market Transformation at NZGBC and developer of

the ECCHO model and Jason is a Passive House Home Designer and PHI Accredited

Certifier.

ECCHO Technical Overview v1.0

 Page 4 of 51

INTRODUCTION ... 2

SPACE HEATING CALCULATION – MONTHLY METHOD .. 7

SPACE COOLING CALCULATION – MONTHLY METHOD 10

LOSSES ... 11

GAINS ... 14

INTERNAL HEAT GAINS ... 16

SPACE OVERHEATING CALCULATION ... 17

CALCULATION OF R/U-VALUES ASSEMBLIES .. 20

WINDOW R/U-VALUES CALCULATIONS .. 21

OCCUPANCY .. 22

CLIMATE DATA ... 25

FUEL DEMAND AND CARBON EMISSIONS ... 27

GLOSSARY ... 32

REFERENCES ... 33

APPENDIX CODE ... 34

IMPLEMENTATION IN PYTHON CODE ... 40

ECCHO Technical Overview v1.0

 Page 5 of 51

Overall calculation

The overall calculation method in ECCHO pulls in dwelling data from the ECCHO database

and climate data. It calculates an energy balance for heating, cooling and overheating; and

then the overall energy (fuel) consumption and carbon emissions based on space heating

and hot water systems, lighting, plug loads and refrigerant losses.

This overview and the ECCHO code reference TFA (Treated Floor Area) but Homestar uses

CFA (Conditioned Floor Area). These are treated as the same value in this text but do note

they can differ. In a few cases that were compared, CFA is approximately 5% higher than

TFA. This does not affect the overall energy demand but does change the per square metre

metrics, as the area used as a reference can be larger.

The core heating and cooling demand calculation used by ECCHO is based on ISO

13790:2008. See Figure 1 below. This standard describes a method for carrying out a

monthly heat balance calculation using average monthly climate data for 19 locations in

New Zealand. Fundamentally this uses conductive heat loss/gain on a monthly basis with

correction factors for the ‘useful’ gains/losses. These correction factors are based on

dynamic models derived similarly to ISO52016. Solar gains on transparent surfaces use

monthly averages for vertical surfaces for each compass direction (precalculated) and a

horizontal surface to calculate the monthly solar gain for the specific transparent surface

orientation and tilt. This is similar to the way ISO52010 pre-calculates monthly solar inputs

but allows for any surface orientation and tilt with smooth changes between values. This

compares to lumping surfaces into the closest orientation and calculating as ISO52010

suggests.

ECCHO Technical Overview v1.0

 Page 6 of 51

Figure 1. ECCHO online overall flowchart

ECCHO Technical Overview v1.0

 Page 7 of 51

Space heating calculation – monthly method

Heating Balance

Annual space heating demand (kWh/year) is calculated in ECCHO by estimating and then

summing, the residual heat input required to balance the following gains and losses for

each month:

• transmission heat transfer between the conditioned space and the external

environment, governed by the difference between the temperature of the

conditioned zone and the (monthly average) external temperature;

• ventilation heat transfer (by natural ventilation or by a mechanical ventilation

system), governed by the difference between the temperature of the conditioned

zone and the supply air temperature;

• radiative heat losses to the sky and convection losses from air movement across

the external surfaces;

• internal heat gains (including negative gains from heat sinks), for instance from

persons, appliances, lighting and heat dissipated in or absorbed by heating,

cooling, hot water or ventilation systems (multiplied by the gains utilisation factor);

• solar heat gains (which can be direct, e.g. through windows, or indirect, e.g. via

absorption in opaque building elements); and

• storage of heat in, or release of stored heat from, the mass of the building;

This is a quasi-steady state method calculating the heat balance over each month and the

dynamic effects are considered by an empirically determined gain utilisation factor. Note

this generally follows the monthly method from ISO13790, not the annual method,

although the results are presented as annual sums.

As noted, [PHPP 2015 pg. 165] the annual heating demand calculated from the ISO13790

monthly method usually correlated well with dynamic simulations, but the monthly values

do not as the seasonal storage effects are neglected. This results in higher heating values

early in the heating period and lesser values later.

ECCHO assumes a fixed indoor heating set point of 20C and cooling set point of 25C to

comply with Homestar. The custom calculation allows a user to input a different set point

temperature. The heat balance is based on the difference between these assumed internal

temperatures and the outdoor temperature data.

Building thermal mass can be set in the UI to custom, user defined or default values. These

values follow the PHPP definition below and are in Wh/K/m2. ISO13790 uses J/K/m2 and

ranges from 80,000 to 370,000 J/K/m2, which corresponds to 22 to 103 Wh/K/m2. This is a

lower range than the PHI recommended range: a minimum of 60 Wh/K/m2 for a fully

ECCHO Technical Overview v1.0

 Page 8 of 51

lightweight to a maximum of 204 Wh/(m2K) for a fully heavyweight building. (A fully

heavyweight building would have exposed concrete slab/walls/ceilings with external

insulation.)

ECCHO allows for either user-defined or pre-defined thermal mass parameters. The pre-

defined values are as follows in Table 1 and are loaded from thermal_mass.csv. The overall

thermal mass of the building can be estimated by considering each space in the building’s

construction mass for each of the six surfaces that make up that space and then weighting

them for the floor area with each construction type. For example, if all the spaces in a

building have one massive surface (the floor) then the overall thermal mass is 60+24 or 84

Wh/K/m2. In the case of a two-level building where only the lower level has a thermally

massive floor, then it is 84/2 + 60/2=72 resulting in 72 Wh/K/m2. Thermal mass impacts the

time constant of the building and how much of the gains can be counted to reduce the

heating needed to maintain the temperature of the building.

Table 1: Building thermal mass based on constructions for structure.

Building frame and structure
Thermal mass

Wh/K/m2

Timber floor on piles 60

Concrete slab single level timber 84

Concrete slab two levels timber 72

Concrete slab and concrete midfloor 84

Gain utilisation factor

The monthly gains are adjusted by a gain utilisation factor. This dimensionless factor

expresses the ‘usefulness’ of the heat gains in terms of the percentage of total gains

available to contribute towards heating. It is a function of the thermal mass (heat capacity)

of the building, the average losses and the ratio of gains and losses for each month.

The method is applied exactly as outlined in ISO 13790 with empirical constants aH,0 and

tH,O as follows: aH,0 = 1, tH,O = 16

ECCHO Technical Overview v1.0

 Page 9 of 51

These constants are taken directly from PHPP and have not been adapted for New Zealand.

They differ only slightly from the default constants in ISO 13790 which are aH,0 = 1 and

tH,O = 15 for the monthly method.

There is an equivalent loss utilisation factor for cooling that is also as per ISO13790. The

constants are the same as above for heating.

Python: Function heat_balance

ECCHO Technical Overview v1.0

 Page 10 of 51

Space cooling calculation – monthly method

Cooling balance

Annual cooling demand (kWh/year) is calculated in ECCHO by estimating, and then

summing, the residual heat removal required to balance the gains and losses for each

month. This is completely analogous to the heat balance and is a quasi-steady state method

calculating the cooling balance over each month. The dynamic effects are considered by

an empirically determined loss utilisation factor.

Python: Space cooling

ECCHO Technical Overview v1.0

 Page 11 of 51

Losses

Transmission heat losses

The total yearly transmission heat losses through external element areas are calculated as

the sum of the monthly losses. Each monthly heat loss, kWh, is calculated as the product of

the area, U-value, the difference between internal and external temperatures (i.e. the

average monthly temperature) and the number of hours in each month.

Sum Ui x A x (inside temperature – average monthly outdoor temperature) x hrs per month

Function areas_calc3

This function inputs areas, windows, thermal bridges and returns areas_sum which contains

the overall heat loss grouped as shown in PHPP Areas sheet at the top. This is simple

summation.

Ground heat transfer

The ground heat loss (for slabs and suspended floors within 500mm of the ground) is

calculated in ECCHO based on the methodology in ISO13370:2007, which calculates

monthly ground temperatures below the slab. ECCHO then uses these monthly ground

temperatures and the slab thermal transmittance, along with slab edge and floor-to-ground

thermal bridge PSI values, to calculate the heat loss/gain from the ground. Note this is done

using the methodology in PHPPv9.6a (the methods in PHPPv10 are different).

ECCHO calculates a ground temperature based on (1) the winter internal temperature (20C

or custom) and (2) the summer internal temperature (25C or custom). Which ground

temperature is used depends on the assumption of hours of heating or cooling in that

month.

Sum Ui x A x (inside temperature – average effective monthly ground temperature) x hrs per

month

Note several simplifications are assumed for the ground calculation. Ground thermal

conductivity is assumed in ECCHO online to be fixed at 2 W/(mK) (the same as the NZBC)

with a heat capacity of 2 MJ/(m³K). The crawl space is assumed to not have insulation on

the walls (R0.4) or ground (R0.17) below the building. Crawl space height is assumed to be

0.8m with a local wind velocity of 4 m/s and a wind shield factor of 0.05, which is considered

reasonable for an average suburban location. The ventilation area openings of the crawl

ECCHO Technical Overview v1.0

 Page 12 of 51

space are set to 0.35% of the foundation area (the NZBC E2/AS1 minimum of 3,500 mm2 of

opening per sqm of foundation area). Ground water correction assumes a 3m depth and a

flow rate of 0.05 metres/day.

Python code

Ventilation losses

Heat losses from ventilation (both purpose and infiltration) are approximated following the

methodology in ISO 13790. In this function the overall annual ventilation loss is then

calculated as the sum of the monthly losses:

Ventilation loss per month = Effective_vent_rate * 1/3 * (indoor temp – avg monthly outdoor

temp) x hours in the month. Note 1/3 is the volumetric heat capacity of air (i.e. 1200 J/ (m3K)

/ 3600 s/hr).

The Effective ventilation rate is based on purpose provided ventilation rate, infiltration and

heat recovery efficiency and provided in m3/hr.

The ventilation volume is the CFA x average room height.

The purpose provided ventilation rate is calculated as the maximum of 0.35 air changes

(based on the CFA x average stud height) or 7.5 litres/minute/occupant, whichever is

highest in accordance with NZS4303. The occupancy used for this calculation depends on

whether ECCHO is in Homestar or Custom mode. In Homestar mode ECCHO uses the

default occupancy based on the floor area. In Custom mode ECCHO uses the custom

occupancy set by the user.

The infiltration rate is calculated according to the approach in EN832 (also EN12831) based

on the assumed airtightness of the home (either from a pressure test or the airtightness

assumed from the age of the home). Note that the infiltration rate is reduced by the

depressurisation provided by extract-only ventilation when compared to window-only

intermittent ventilation. ECCHO Online assumes moderate protection and several sides

exposed. These variables cannot be changed currently so are standardised.

ECCHO Technical Overview v1.0

 Page 13 of 51

WINDPROT-E and WINDPROT-F are constants representing the wind protection level as in

Table 2 below taken from the Excel version of ECCHO.

Table 2: Wind protections coefficients. Note ECCHO set to assume moderate protection with several sides

exposed.

Coefficient e for wind protection class:
several sides

exposed
one side exposed

No protection 0.1 0.03

Moderate protection 0.07 0.02

High protection 0.04 0.01

High protection 0.04 0.01

Coefficient f 20 20

The effective heat recovery efficiency is zero for intermittent and continuous extract

systems. For MVHR systems it is a function of the MVHR unit’s specified heat recovery

efficiency, adjusted for losses from ductwork and the location of the unit. This function

calculates the heat recovery efficiency adjustment based on inside/outside installation and

duct insulation. Duct diameter, insulation thermal conductivity and flow rate for the heat

transfer calculation are hard coded.

Python code: Ventilation calculations

ECCHO Technical Overview v1.0

 Page 14 of 51

Gains

Solar gain through windows and opaque elements

The solar gain through windows and opaque elements is calculated as per ISO 13790:

Where the solar shading reduction factor, Fsh,ob,k (REDFACSH in ECCHO) is assumed to be

0.7 for opaque elements and calculated separately for windows.

The solar irradiance Isol,k is taken from the monthly climate data for each cardinal for each

location, adjusted for the orientation and tilt angle of each surface and then summed. This

is directly a function of orientation and tilt angle and is not binned to the closest angle (as

suggested in ISO 52016-1:2017 Section 6.6.8.2 Note 3, which recommends using discrete

45-degree sectors to avoid this adjustment for the specific orientation and tilt).

The conversion is based on dynamic hourly simulations that take the different parts of the

solar radiation—direct, diffuse and ground reflected—into account. Using these calculations

as a reference, PHI derived a trigonometric interpolation routine that is used in PHPP. This

is a proprietary PHI algorithm that is not found in any standard. Note that as we are

interpolating between the radiation values for the horizontal and the cardinal points, large

errors are unlikely as the shape of the curves and the radiation changes with orientation

and tilt are smooth.

ECCHO online for glazing uses the additional shading reduction factor PHPP defaults of

0.95 for dirt and 0.85 for non-vertical radiation incidence along with the 0.9 factor (a

correction factor for non-scattering glazing as specified in ISO13890 for the solar

transmittance of glazed elements).

Where the following constants are assumed in ECCHO online (except for special

ASHRAE140 cases):

radiation shading factor REDFACSH = 0.7

external absorption coefficient EXTABS = 0.7

exterior emissivity EXTEM = 0.9

external surface resistance RE = 0.04 m2.K/W

ECCHO Technical Overview v1.0

 Page 15 of 51

external radiative heat transfer coefficient HRAD = 5 W/m2.K

external convective heat transfer coefficient HKON = 15 W/m2.K

This is a slight variation on the formula in ISO 13790.

Radiation to the sky

Radiative losses and gains to the sky from surfaces is calculated according to ISO13790.

ECCHO uses sky temperatures for each month taken from climate data. The calculation

includes a derivation of surface temperatures from the air temperature assuming a surface

resistance of 0.04 m2.K/W.

Python code: window calculations

ECCHO Technical Overview v1.0

 Page 16 of 51

Internal heat gains

Internal heat gains are set in the user interface as “default”, “nzs4218” or “building_code”.

In Homestar default mode, ECCHO calculates internal heat gains for the purposes of

calculating a conservative winter annual heat demand. This is deliberately low and

standardised. A common internal heat gain used residentially would be 5W/m2, however

this is based on historic data and does not consider modern energy-efficient lighting and

appliances. It also unrealistically makes homes appear ‘self-heating’ in warmer climates,

which does not reflect reality.

NZGBC expects that HEEP 2.0 from BRANZ will be able to update the default internal heat

gains considering modern energy-efficient lighting and appliances.

In nzs4218 or building code mode, ECCHO calculates the internal heat gain based on

nzs4218 values converted to a steady state value. This also accounts for a 100W heat gain

from domestic hot water heating if the cylinder is located inside.

When in custom mode, the internal heat gains are calculated from first principles based on

the custom occupancy and chosen appliances (note if occupancy is set to zero, so are the

internal heat gains).

Python: internal heat gain calculations

ECCHO Technical Overview v1.0

 Page 17 of 51

Space overheating calculation

The overheating calculation uses the PHPP method, which calculates an annual

temperature curve for a case without active cooling (heat recovery bypass function enabled

and no heating). “The temperatures are then sorted by magnitude to produce an annual

temperature/duration curve. A line of best fit in the vicinity of the temperature threshold of

interest gives the percentage of time in which interior temperatures exceed the desired

limit. This method allows determination of the acceptability of the interior temperature

without hourly climate data, and with only a small number of entries.” [PHPP 2015 pg. 183]

This methodology was first developed in a working group [Feist 1999] and then later

translated into PHPP.

Table 3: PHPP table of summer thermal comfort categories. Note the overheating prediction only roughly

assesses the summer thermal comfort into these categories.

% time exceeded Summer thermal comfort

h>25 °C assessment

> 15% catastrophic

10 – 15% poor

5 – 10% acceptable

2 – 5% good

0–2% excellent

Note the expected accuracy is only sufficient to sort into categories as shown in Table 3

above. Experience (Schnieders 2012) with dynamic models have shown that climatic

differences from one summer to the next can result in around 5% shift in overheating and

thus a more accurate method may not be more predictive. “This method is not appropriate

to apply to single rooms except to see which rooms may contribute most to overheating—

this model approach is based on a dynamic single zone building” [PHPP 2015]. This method

is also not appropriate for buildings with poor thermal performance where the single day

load exceeds that which can be stored in the building thermal mass.

In order to be able to show the influence of individual hot days as well, and to obtain

meaningful results for small overheating frequency values, the month of July is

ECCHO Technical Overview v1.0

 Page 18 of 51

additionally divided into several parts: the cooling load day at the end of the month, the

four preceding days with slightly lower temperatures and radiation values, another twelve

preceding days with lower temperatures and radiation values once more, and the then

the rest of the month. In the process, the month is divided in such a way that the monthly

average values for the outdoor temperature and solar incidence for July remain

unchanged. The average values for the indoor temperature are also determined in the

same way for these shorter periods.

The frequency of overheating can now be ascertained from all average values and the

respective time periods. Although the temperatures determined using the simplified

method differ greatly from the hourly simulation at times, the overheating frequencies

correlate exactly for both methods to enable classification in accordance with Table 3.

[PHPP 2015].

Note the code in this function calculates the overheating in the same manner as PHPP. Also

note that July is cited as the hottest month as the climate data is shifted six months to

simulate the northern hemisphere. The methodology is laid out in Feist 1999.

Function summer_overheating

This function inputs the vent_data, dwelling_data, location_climate_data_df, windows_sum,

areas_rad, areas_sum, vent_calc, custom_ihg, window_airchange, location_climate_data,

internal_heat_gain. The function then returns the losses_gains, gain_loss_calc with the

overheating data. These outputs are not used in the heating or cooling balance.

Summer ventilation and impact on overheating

ECCHO online calculates the summer additional air change rate based on window

openings. This implements simplified calculations from the PHPP Summer Ventilation sheet

‘Estimation for window air change rate’ (not the night ventilation rate), assuming no height

difference between the openings, an average temperature difference of 4K and a wind

speed of 1 m/s. The resulting air change rate is used in the overheating calculation only to

reduce overheating value. It is important to realise this is an average impact at best and hot

still days will exceed the values.

Opening time is set in the UI with a drop-down menu and directly impacts the ventilation rate.

ECCHO Technical Overview v1.0

 Page 19 of 51

Function sumvent

This function calculates summer airchange rate based on window openings. Inputs are vent_data, tfa

(from dwelling_data) and the function returns the resultant_air_change which is used in the

overheating calculation only. Note although the windows are assumed to be on the same level (no

stack effect between windows) the temperature difference is assumed to cause ventilation across the

height of the window itself.

Note 'win_security' is a numeric set in the UI to correct for time windows are open.

Python code

ECCHO Technical Overview v1.0

 Page 20 of 51

Calculation of R/U-values assemblies

ECCHO includes an assembly R/U value calculator. This follows the method in ISO6946:

2017 for thermally inhomogeneous layers. The external and internal surface thermal

resistances are varied slightly from that in ISO 6946 based on the climate zone being

predominately heating or cooling dominate. Note that the change of surface resistances in

PHPP is a PHI change from ISO6946 methodology, based on the idea that the predominate

energy flow direction reverses in cooling predominate climates. This is not in accordance

with the ISO standard and there is some agreement at PHI to put this back to standard for

slab-on-grade.

This U-value calculation method is only able to handle three sections each with one

percentage through the entire construction. If there are more sections than this, another

calculation tool should be used. The most accurate method would use a 2D finite element

tool such as Flixo or Therm to ISO10211.

The U-value calculation follows ISO6946 approach for thermally homogeneous and

inhomogeneous layers but does not calculate tapered layers or calculate corrections for

metallic fasteners. Note that this method is not valid for cases where the upper limit of

thermal resistance to the lower limit exceeds 1.5x or where insulation is bridged by metal.

If this limit is exceeded the thermal resistance should be calculated using ISO10211 and

entered as a custom U-value or R-value. The methodology from ISO6946 is to calculate the

upper and lower limit of the thermal resistance and then use the average. Note for

reference the upper limit is the NZS4214 calculation method (with slightly different surface

resistances).

Python code

ECCHO Technical Overview v1.0

 Page 21 of 51

Window R/U-values calculations

The window U-value is calculated using the approach in ISO10077-1 with a single frame

width per window and a single frame type. To have a comparison to 2023 H1 Code, the

window U-value is also calculated without the thermal bridge losses due to the installation

in the wall. This calculation takes as input the glazing type and frame type, the height and

width of the window and how many sides of the window are to other windows rather than

to the wall. This is very important as the losses due to the window being installed in the wall

are set to zero if it is adjacent to another window. Note that the window orientation and

angle set from the areas they are installed in. The windows are grouped by orientation or if

the angle to horizontal is less than 30 degrees, into horizontal windows. This puts all

windows into one of these five groups (four cardinal directions plus horizontal).

Python code

ECCHO Technical Overview v1.0

 Page 22 of 51

Occupancy

The standard (default) occupancy originally used in ECCHO for Homestar compliance was

the same as that used in PHPP for Passive House compliance. This in turn was based on

some UK/German research into actual occupancy in homes in those countries. A default

occupancy is used for the calculation of ventilation rates, hot water consumption and

summer indoor heat gains when calculating energy demand for Homestar. A custom

occupancy can be inputted. This is only used in ‘custom’ mode.

Occupancy is tied to conditioned floor area (CFA, not bedroom numbers). Originally this

was based on PHPP as follows:

Number of occupants = 1 + 1.9 * (1 - EXP(-0.00013 * (CFA-7)^2)) + 0.001 * CFA

Figure 2: PHI default occupancy versus floor area used in ECCHO.

The main calculations impacted by occupancy are internal heat gain and hot water demand.

For default Homestar internal heat gain however, this is limited to overheating/cooling.

Internal heat gain for winter heat demand is also standardised based on floor area as

IHG (Watts) = 2.1 * CFA + 50

The main area of impact therefore is hot water demand. The PHPP occupancy algorithm

effectively caps occupancy at around 3.1 people per home meaning that as homes get

larger the same amount of hot water gets progressively divided by a larger floor area which

in turn makes the electricity demand targets easier to meet (which further means less

incentive to improve hot water efficiency).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 50 100 150 200

Occupancy vs floor area

ECCHO Technical Overview v1.0

 Page 23 of 51

NZGBC has obtained StatsNZ data on occupancy of New Zealand homes based on census

data. This is illustrated in the graph below which also compares it with the current ECCHO

(PHPP) assumed occupancy.

Figure 3: Occupancy versus CFA for NZ. Source NZGBC ERP review Dec2023.

As the graph shows, for the smaller homes (50 – 120m2), the existing algorithm is broadly

aligned with reality. As homes get larger, however, the actual occupancy is likely to be

higher, diminishing the impact of hot water efficiency on electricity demand in these larger

homes.

One possible justification for keeping the occupancy algorithm as it is would be to keep

consistency with Passive House calculations. However, as noted, we have not proposed to

change the internal heat gain algorithm meaning that the main heat demand calculation

would remain consistent. The main area of departure is in the calculation of hot water

demand as we do not consider the current algorithms to accurately represent larger homes.

ECCHO Technical Overview v1.0

 Page 24 of 51

As such ECCHO has changed the occupancy algorithm to the following linear equation with

version 3:

Number of occupants = 0.0168 * CFA + 0.5788

Python code

ECCHO Technical Overview v1.0

 Page 25 of 51

Climate data

Weather files are taken from PHPPv9.6a and this data is based on the NIWA hourly climate

files with some minor adjustment by PHI. Meteonorm can be used to generate the monthly

climate data from hourly EPW files, except for the heating and cooling load columns. The

columns with monthly data are measured data summed for the month. This climate data

was checked for heat loss across the available New Zealand weather stations here:

sustainableengineering.co.nz/phclimatenz

The heating and cooling load data is generated and is not a measured climate parameter.

Rather, the heating and cooling load data is produced by PHI using a dynamic hourly

building simulation model (DYNBIL) designed specifically to model Passive House projects.

In essence, DYNBIL dynamically simulates an example Passive House structure adjusted to

just meet the certification standard on SSHD for the provided hourly climate file

(Schnieders, 2003).

The heating and cooling load data is produced by looking at the rate of change of heat

transfer. This process requires a Typical Meteorological Year (TMY) hourly weather file that

has been checked for applicability to the region in which the loads will be used. NIWA had

developed TMY hourly files to represent recommended New Zealand regional climates

(Liley, Sturman, Shiona & Wratt, 2008), but these have not been checked beyond that

documented in Quinn 2015.

The monthly temperatures are adjusted to account for the difference between the height

above sea level (ASL) of the weather station for which the weather data was obtained and

the height ASL of the home being assessed. ECCHO applies a reduction/increase of 0.6C

for every 100m increase/decrease in the height ASL of the building above the height ASL

of the weather station.

These adjusted monthly temperatures are used to return the climate type that is used to set

the surface air film resistances. The determination of climate ‘type’ is carried out by

summing the number of heating predominant months (average temperature less than 10C)

and the number of cooling predominant months (average temperature greater than 20C).

A climate is considered ‘heating predominant’ if the number of heating months is greater

than the cooling predominant months + 2.

A climate is considered ‘cooling predominant’ if the number of cooling months is greater

than the heating predominant months + 2.

https://sustainableengineering.co.nz/phclimatenz/

ECCHO Technical Overview v1.0

 Page 26 of 51

Otherwise, the climate is considered ‘temperate’.

Python code

Orientation of building and site to climate

The climate data and equations in ECCHO assume that the sun tracks to the south since the

reference standards have generally been written for Europe. Southern hemisphere climate

data must therefore be shifted by six months and the orientation of all areas mirrored about

the equator so that north walls face south and vice versa. Note that the Climate_data.csv

file already has the data mirrored about the equator as it is in PHPPv9.6a. Also note that the

monthly data is simply shifted six months and as the number of days in the month is not

shifted the climate data is slightly changed. For example, the southern hemisphere warm

February with 28 days is shifted to August with 31 days. This does impact the thermal

predictions but only slightly and was accepted in the development of PHPPv9.6a.

Python code

ECCHO Technical Overview v1.0

 Page 27 of 51

Fuel demand and carbon emissions

Overview

The overall fuel demand for a home is broken down into energy used for:

• space heating (discussed previously)

• hot water

• custom appliance annual energy demand

• lighting

• auxiliary annual demand for fans and pumps

The carbon emissions are calculated from the fuel demand multiplied by the carbon

intensity of the fuel plus the carbon intensity of the refrigerant leakage.

Hot water

Hot water demand is estimated in ECCHO from the total hot water draw off from taps and

fittings plus any hot water losses from hot water cylinders (if present) and pipework.

The total energy required to heat the total hot water demand is estimated based on the

average cold water temperature for the home’s location. The cold water temperature is

assumed to be the average outdoor temperature for the house location + 1C.

The total draw off from taps and fittings is estimated from the building’s occupancy (see

building occupancy section) and the amounts are pulled from hot_water.csv. The

appliance DHW demand is added to this.

Table 4: DHW usage from hot_water.csv.

Application Calculated

per person?

Time of use

per use,

minutes

Amount of

uses

according to

type of use,

Flow rate,

litres per

second

Useful

temperature

, C

Shower Yes 6 0.9 12 38

Hand wash

basin

Yes 0.3 3 4 30

Bathing Yes 10 0.03333 15 38

ECCHO Technical Overview v1.0

 Page 28 of 51

Teeth

brushing

Yes 0.05 2 4 30

Cooking/

drinking

Yes 0.25 1 6 45

Dishwashing No 0.6 1 6 45

Cleaning the

kitchen

No 0.5 1 6 38

Cleaning

rooms

No 1 0.142857143 6 38

The annual kWh for generation of hot water is then calculated from the daily demand and

the temperature difference.

Hot water storage losses are calculated for the tank storage and pipe losses for DHW in a

similar manner to PHPP. Note that currently the storage cylinder is hard coded to 60C, hot

water flow temperatures to 55C, external pipe diameter to 0.015m and 6 tap openings per

day.

Any annual cylinder losses are derived from AS/NZS 4692.2, which specifies maximum heat

losses, corrected for indoor/outdoor temperature depending on the location of the

cylinder (indoors or outdoors). The following table sets out the unit heat loss for cylinders

between 15 and 400 litres in capacity:

Table 5: Hot water cylinder losses in W/K for range of sizes in litres.

Cylinder size (litres) Heat loss W/K

0 0

15 0.46

25 0.5

45 0.58

50 0.6

90 0.76

ECCHO Technical Overview v1.0

 Page 29 of 51

135 0.94

180 1.12

225 1.3

250 1.4

270 1.48

300 1.6

370 1.88

400 2

Cylinder losses assume a new cylinder insulated to the current NZ Standard (NZS

4305:1996). It is not currently possible to change this default to a more poorly performing

older cylinder. Losses are calculated assuming a cylinder temperature of 60C. The deltaT is

taken as being between this temperature and the specified indoor temperature (20C by

default for Homestar) or the average outdoor annual temperature.

Pipe losses (W/K) are based on an assumed pipe length, which is calculated as follows:

pipe_length (m) = Conditioned Floor Area^(1/3) * tapping_points + 10

where tapping points = 1+CFA/50.

ECCHO assumes six tap openings per person per day. Therefore, a volume of hot water is

assumed to be drawn into the total length of pipework that then cools down from the

delivered temperature (55C) to the indoor temperature six times per day per occupant for

the full length of pipe. This is the same calculation methodology as used by PHPP.

An additional loss is then included for the fittings and 2m of pipework off the top of any

cylinder (again, if present). This is based on the extent to which these are insulated. The

default (‘normal’) is a continuous loss of 0.5 W/K (deltaT being the difference between the

cylinder temp and the indoor/outdoor cylinder location) with 0.25 W/K for medium

insulation and 0.1 W/K for excellent insulation. See Guide to ECCHO for details of what each

level represents.

Python code

ECCHO Technical Overview v1.0

 Page 30 of 51

Appliance energy demand

ECCHO calculates the energy demand from appliances including both appliance hot water

and electricity. Only the cooktop has an option for LPG or natural gas (ie a gas oven etc is

not an option).

There is the option in ECCHO to include a domestic hot water connection to dishwashers

and washing machines. This will increase the overall domestic hot water demand, but

potentially reduce overall dwelling electricity demand if the domestic hot water heat source

has a COP greater than 1.0. This is because the default assumption is that these appliances

heat hot water with a resistive heater internally.

Python code

Lighting

ECCHO assumes that each light is on for an average of 2.2 hours, 1.2 hours and 0.7 hours

per day respectively in the main living areas, bedrooms and all remaining areas. This is an

average of summer and winter daily hours of use taken from the BRANZ HEEP work and

corroborated by Australian analysis. Note that whole rooms may be lit for longer than this

in practice, but this is the average for all lights in each room, taking into account that not all

lights may be on at once in larger rooms like living/dining areas that have multiple circuits.

Python code

Energy from fans (and pumps)

This is the overall auxiliary annual demand for fans and pumps per unit reference area. The

definition of auxiliary energy is the same as PHPP and includes the energy necessary to run

or control the mechanical systems: heating, ventilation and DHW (which would include any

solar thermal system power demand). ECCHO does not currently calculate any energy from

pumps used in the dwelling. This because central heating is relatively rare in the New

Zealand market. This could be added if needed.

Python code

Refrigerant leakage

Refrigerant leakage is modelled as a continuous leakage rate over the service life of the

system plus an assumed end-of-life loss. These loss rates are shown in the table below. This

ECCHO Technical Overview v1.0

 Page 31 of 51

conservative position is due to the lack of good refrigerant recovery data in New Zealand

and these numbers can and should be updated once more research is available. This does

result in rewarding lower GWP refrigerants, with one such as propane performing quite

well.

Table 6: Refrigerant properties from refrig_properties.csv. Note leakage rate, end of life loss and GSP

Refrigerant ODP GWP Leak

rate

End-

of-life

loss

Use case Source Comment

HFC-134a 0 1300 7.0% 10% replaced CFC-12 Calm and

Hourahan,

2011

WMO 2014,

Appendix 5A

HFC-32 0 677 7.0% 10% alternate to R-410A

for unitary

Calm and

Hourahan,

2011

WMO 2014,

Appendix 5A

HFC-404A 0 3943 7.0% 10% low temp

applications;

replaced CFC-502

Calm and

Hourahan,

2011

IPCC AR5

HFC-407C 0 1624 7.0% 10% HCFC-22

replacement for DX

unitary

Calm and

Hourahan,

2011

IPCC AR5

HFC-410A 0 1924 7.0% 10% new equipment

replacing HCFC-22

Calm and

Hourahan,

2011

IPCC AR5

HFC-417A 0 2300 7.0% 10% DuPont

ISCEON@MO59 repl

HCFC-22

Calm and

Hourahan,

2011

IPCC AR5

Python code

ECCHO Technical Overview v1.0

 Page 32 of 51

Glossary

CFA Conditioned Floor Area

IHG Internal Heat Gain

TFA Treated Floor Area

UI User Interface

GWP Global Warming Potential – usually in kgCO2e over 100 years

ECCHO Technical Overview v1.0

 Page 33 of 51

References

Quinn, Jason E. (2015), “Affordable certified climate files—process used in New Zealand,”

South Pacific Passive House Conference (SPPHC) 2015.

Schnieders, J. (2003) Climate Data for the Determination of Passive House Heat Loads in

Northwest Europe. Passive House Institute. Project sponsored by the European

Commission under contract EIE-2003-030, PEP.

Liley, J. B., Sturman, B., Shiona, H., and Wratt, D. S. (2008). Typical Meteorological Years for

the New Zealand Home Energy Rating Scheme. NIWA Client Report: LAU2008- 01-JBL,

November 2008

PHPP (2015) Passive House Planning Package version 9 Passive House Institute, 2015

Roulet, C A, and B. Anderson. 2006. “CEN Standards for Implementing the European

Directive on Energy Performance of Buildings.” In PLEA2006 - 23rd Conference on Passive

and Low Energy Architecture, 1–6. Geneva.

Schnieders, J. (2012) PB 41: Planning tools for the summer situation in non-residential

buildings, PHI, Passipedia.

https://passipedia.org/phi_publications/pb_41/planning_tools_for_the_summer_s

ituation_in_non-residential_buildings

[Feist 1999] Feist, Wolfgang (Hrsg.): „Passivhaus Sommerfall“; Protokollband Nr. 15 des

Arbeitskreises kostengünstige Passivhäuser, Passivhaus Institut, Darmstadt 1999 (”Passive

House Summer Case”; Protocol Volume No. 15 of the Working Group for Cost-Efficient

Passive Houses; Passive House Institute, Darmstadt 1997). Primary article here

https://passipedia.org/phi_publications/pb_15/a_simplified_method_for_determi

ning_thermal_comfort_in_summer_for_buildings_without_active_cooling

https://passipedia.org/phi_publications/pb_41/planning_tools_for_the_summer_situation_in_non-residential_buildings
https://passipedia.org/phi_publications/pb_41/planning_tools_for_the_summer_situation_in_non-residential_buildings
https://passipedia.org/phi_publications/pb_15/a_simplified_method_for_determining_thermal_comfort_in_summer_for_buildings_without_active_cooling
https://passipedia.org/phi_publications/pb_15/a_simplified_method_for_determining_thermal_comfort_in_summer_for_buildings_without_active_cooling

ECCHO Technical Overview v1.0

 Page 34 of 51

Appendix Code

Database relationships in ECCHO

ECCHO uses several databases to store the information for inputs and outputs of the

computer model. The user only interacts with these databases via the User Interface (UI) but

it can be useful to understand the overall structure of the database to understand how best

to use the code.

1. At the top level are Users.

a. Glazing and Framing tables belong to Users. They can be used across

multiple projects

2. Each user has multiple Projects.

a. Assemblies are children of Projects. They can be copied in the UI from

project to project

1. Layers. This is a table of individual layers of an assembly

(plasterboard, timber, insulation etc). Child of Assemblies.

3. Each project has multiple Dwellings. Dwelling data includes miscellaneous data

such as the number and size of hot water cylinder.

4. Each Dwelling has:

a. Multiple Areas (walls, roofs, Floors – see below)

1. Windows are a child of Areas

2. Windows have a many-to-many relationship to Glazing and

Framing

b. Multiple Floors (separate table since these are sent to the ground

temperature calculation). ECCHO duplicates a floor in Areas and Floors.

The former is used for the annual heat loss calc, the latter for the ground

temperature.

c. Ventilation. Data on the ventilation systems used in each dwelling.

d. Thermal bridges

e. Space heaters

f. Hot water heaters

g. Showers

h. Lighting

i. Appliances

ECCHO Technical Overview v1.0

 Page 35 of 51

j. Refrigerants

There is also a separate MVHR table that has no parent/child relationship. It is simply a

record of all the ventilation systems we have in ECCHO. It iis slightly misnamed as

continuous extract systems are also contained here. Data cannot be updated by users

but must be done through the backend by NZGBC. This is a check on the quality of

data on ventilation systems in ECCHO.

Basic dwelling information

Class Dwelling_calculated (see dwelling.py)

This is the main dwelling object class definition (note capital D in Dwelling_calculated). This

contains all the data (in the form of Pandas dataframes) for calculating the energy demand

of the dwelling. The dwelling object's parameters are all pandas objects (tables of data).

Tables created are: project_data, dwelling_data, appliances, assemblies, areas, windows,

thermal_bridges, gnd_temp_data, vent_data, lighting_data, hot_water_data, shower_data,

space_heater_data, refrigerant_data, mvhr_units.

This object contains the custom method calculate_energy that runs through the calculations

for a dwelling.

A more detailed list of the data class for each object used is in models.py

Module models.py

Contains classes with the database structure – contents summarized below.

class User Top level are Users. Note that Glazing and Framing tables belong to Users. They can be used

across multiple projects

class Project Defines fields for the database entries for a Project class which can contain multiple dwelling

and assemblies

class Dwelling Defines fields for the database entries for each dwelling which contains multiple areas_,

windows_, grounds_,…, This also generates the unique ID

class Glazing Defines fields for the database entries for description, U_glazing, g_glazing; relation with

Window_data to allow backref of glazing

class Framing Defines fields for the database entries for description, U_frame, frame_width, frame_psi,

frame_install_psi; relation with Window_data to allow backref of framing. Note only single

framing width, single PSI_g== frame_psi, single PSI_install==frame_install_psi

ECCHO Technical Overview v1.0

 Page 36 of 51

class Assemblies Defines fields for the database entries for description, ass_type, adjacent, u_value,

percentages for the layers; then links to data to/from areas, grounds, layers; Note hard coded

three fractions for layers.

class Layers Defines fields for the database entries for each layer taking in name, Rswitch, lambda for each

of three columns and then the single layer thickness

class Areas Defines fields for the database entries similar to Areas sheet in PHPP columns

class Room Defines fields for the database entries for HHS room calculations. Heater size, volume etc.

class Window_data Defines fields for the database entries similar to windows plus shading sheet in PHPP only

overhang depth/height and then shading % winter/summer

class Ground Defines fields for the database entries area_m2, p_length, assembly_id and links to assemblies

class Ventilation Defines fields for the database entries similar to ventilation sheet but limited to fewer inputs

class Th_bridges Defines fields for the database entries

class Space_heaters Defines fields for the database entries

class

Hot_water_systems

Defines fields for the database entries

class Showers Defines fields for the database entries

class Mvhr_units Defines fields for the database entries

class Lighting Defines fields for the database entries

class Appliances Defines fields for the database entries

class Refrigerant Pulls in refrigerant GWP and system life along with leakage rates and sets emissions

class Comments Tracks comments and resolved plus date.

class Variants Stores fields from online table inputs and results.

ECCHO Technical Overview v1.0

 Page 37 of 51

Functions

App/Calculation/

Areas.py

areas_calc1 rotates the building by adding the user entered orientation in

degrees, makes sure all angles between 0 and 360; Then flips

to northern hemisphere.

if float(latitude) < 0: areas["dev_nth"] =

areas["dev_nth"].apply(lambda x: 180 - x if 180 - x >= 0 else

180 - x + 360)

Returns areas

areas_calc2 calculate solar load through opaque surfaces. Pulls in areas,

climate, windows, project_data, dwelling_data and then

Returns areas_rad

areas_calc3 calculate overall heat loss. Returns area_sum

Climate.py

location read in climate file and set location

climate_data adjusts temperature data by altitude lapse factor multiplied by

the location height_above_sea - climate file location height

above sea level. Climate calculations used elsewhere including

peak day etc for overheating

project_climate_type defines heating or cooling predominate or temperate climate

based on climate data. Months <10C heating, >20C cooling

Cooling.py

cooling_balance main cooling demand calculation (based on PHPP cooling

worksheet).

Ground.py

gnd_temp Ground sheet calculations PHPPv9.6a; Hardcodes lots of

options from Excel; Only 'Slab on grade' or 'Susp floor' but

does allow multiple areas.

Heating.py

heat_balance main heating demand calculation (based on PHPP heating

worksheet)

heat_balance_graph back calculate contribution of different areas (walls, floor,

windows etc) to heat gains and losses for heat balance graph

ECCHO Technical Overview v1.0

 Page 38 of 51

Shading.py

shade_calc_winter

shade_calc_summer

Summer.py

summer_overheating main overheating calculation (based on PHPP summer

worksheet)

Uvalues.py

calculate_u_value U_values calculated according to ISO 6946

Ventilation.py

vent_calc1 calculate effective air change rate based on infiltration, heat

recovery efficiency etc; hard codes ventilation protection

factors

effective_heat_recovery_eff calculate heat recovery efficiency adjustment based on

inside/outside install and duct insulation; Hard codes duct

diameter, insulation and flow rate for heat transfer calc

sumvent calculate summer air change rate based on window openings

Windows.py

win_U_value Calculates window U value and glazing percentage from

glazing and framing data

win_calc initial lookup of orientation based on orientation of wall

installed in, plus assign to window cardinals.

win_calc2 calculate global radiation on the surface of windows

win_calc3

win_calc4 sum all installed windows to cardinals

__init__.py Pulls in dwelling and U-values for the version of the calculation

engine

aux_lighting.py

lighting_calc calculate overall annual lighting energy demand from lighting

data

aux_calc calculate overall auxiliary annual demand for fans and pumps

custom_appliances calculate annual demand for energy from appliances

ECCHO Technical Overview v1.0

 Page 39 of 51

ihg calculate internal heat gains from custom appliances in

dwelling Used for summer overheating and custom winter

thermal demand.

dwelling.py

Dwelling_calculated Main dwelling object. This contains all the data (in the form of

Pandas dataframes) for calculating the energy demand of the

dwelling.

calculate_energy dwelling custom method takes in dwelling data and calculates

energy demand. Pulls in climate_data sorts the appliances then

runs through areas_calc1, win_calc, win-calc2, win_calc3,

win_calc4, areas_calc2, areas_calc3, gnd_temp, vent_calc1,

sumvent, lighting_calc, custom_applicances, hot_water_calc,

hot_water_storage, total_hot_water_demand, aux_calc, ihg,

heat_balance, cooling_balance, summer_overheating,

heat_balance_graph

hot_water.py

hot_water_calc

hot_water_storage

ECCHO Technical Overview v1.0

 Page 40 of 51

Implementation in Python code

Method calculate_energy (see dwelling_py)

This dwelling custom method takes in dwelling data and calculates energy demand. Pulls

in climate_data sorts the appliances then runs through areas_calc1, win_calc, win-calc2,

win_calc3, win_calc4, areas_calc2, areas_calc3, gnd_temp, vent_calc1, sumvent,

lighting_calc, custom_applicances, hot_water_calc, hot_water_storage,

total_hot_water_demand, aux_calc, ihg, heat_balance, cooling_balance,

summer_overheating, heat_balance_graph.

There is no physics inside of this method other than setting total_hot_water_demand =

hot_water_demand + storage_losses + pipe_loss.

Go back

Function heat_balance see heating.py

This function takes as inputs the dwelling_data, location_climate_data_df, windows_sum,

areas_rad, areas_sum, vent_calc, Ls, internal_heat_gain, custom_ihg and returns the

gain_loss_list which contains the gain_loss_calc and gains_losses tables.

The function then calculates the heat balance in the same manner as the PHPP file (see

hidden rows 90 to 133).

Function heat_balance_graph see heating.py

This function back-calculates the contribution of different areas (walls, floor, windows etc)

to heat gains and losses for the heat balance graph from the totals. This means the amounts

add up to the monthly method results from the heat_balance function. This function returns

the loss_graph and gain_graph.

Go back

Function cooling_balance

The annual cooling energy demand calculation is based on ISO13790. This function inputs

the vent_data, dwelling_data, location_climate_data_df, windows_sum, areas_rad,

areas_sum, vent_calc, Ls, custom_ihg, window_airchange, location_climate_data,

ECCHO Technical Overview v1.0

 Page 41 of 51

internal_heat_gain and returns the losses_gains, and gain_loss_calc. Note at this time there

is no cooling balance graph in ECCHO online.

Go back

Function and_temp

This function inputs dwelling_data, location_climate_data_df, gnd_temp_data and returns

a modified location_climate_data_df, Ls, gnd_temp_data.

In order to implement the methods, the constants recommended in PHPP as defaults are

used.

GND_LAMBDA = 2.0

 GND_HEAT_CAP = 2.0

 PER_PEN_DEPTH = math.sqrt(365 * 24 * 3600 * GND_LAMBDA / (math.pi * GND_HEAT_CAP * 1000000))

 UVALCRAWL = 5.9

 CRAWLHEIGHT = 0.8

 UVALCRAWLW = 2.5

 WINDVEL = 4.0

 WINDSHEILD = 0.05

 GND_WATER_DEPTH = 3.0

 GND_WATER_FLOW = 0.05

Note the crawl ventilation area is hard coded to NZBC E2/AS1 minimum of 3,500 mm2 of

opening per sqm of foundation area it is not conservative for heating if larger openings are

used.

crawlventarea = 3500 / (1000**2) * gnd_temp_data.loc[x, 'area_m2']

These are then used with the location_climate_data_df to calculate the heating days and

the length of the heating season along with monthly temperatures to sinusoidal

temperature delays from ISO13370. The calculated phase_shift_T, and equivalent thickness

and characteristic dimension is used for each floor are (‘Slab on grade’ or ‘Susp floor’) to

calculate the ground temperature for that floor area.

These temperatures are then combined into monthly ground temperatures for summer,

winter and the average (there are differing ground temperatures as the interior

temperatures are assumed to differ between winter and summer) and added to the

location_climate_data_df.

Go back

ECCHO Technical Overview v1.0

 Page 42 of 51

Function vent_calc1

This function calculates the effective air change rate based on infiltration, heat recovery

efficiency etc; hard codes ventilation protection factors. Inputs required are the

dwelling_data, vent_data, location_climate_data, mvhr_units and the function returns

vent_calc. Note the air volume is the CFA x room height. In the code this is

vent_calc['Air volume'] = vent_data.loc[0, 'room_height'].sum() * dwelling_data.loc[0, 'building_TFA'].sum()

The purpose provided ventilation rate is calculated per:

vent_calc['derived_vent_rate'] = max(0.35, (dwelling_data.loc[0, 'occupancy'] * 7.5 * 3.6) / vent_calc['Air volume'])

The infiltration rate is calculated with WINDPROT-E and WINDPROT-F are constants in

ECCHO online

vent_calc['inf'] = vent_data.loc[0, 'air_change'].sum() * WINDPROTE / (1 + WINDPROTF / WINDPROTE * (excess_extract /

vent_data.loc[0, 'air_change'].sum()) ** 2)

Where the excess extract rate is either zero when using intermittent ventilation or MVHR or

set to the continuous extract rate if using continuous extract ventilation. The result of this is

that infiltration is reduced by the depressurization provided by extract only ventilation.

The effective ventilation rate (used to calculate heat losses) is then the sum of the purpose

provided ventilation rate (adjusted for heat recovery efficiency) and the infiltration rate as

follows:

vent_calc['effective_ach'] = vent_calc['derived_vent_rate'] * (1 - HReff / 100) + vent_calc['inf']

Function effective_heat_recovery_eff

Inputs are dwelling_data, vent_data, location_climate_data, mvhr_units and the function

returns the effective heat recovery efficiency HReff.

The following inputs are set in the code as constants:

DUCT_DIA = 150

 INS_COND = 0.04

 LOFT_TEMP = location_climate_data.loc[0, 'winter_avg'] #assumed temperature in of space outside thermal envelope, eg

loft in winter

 DUCT_VEL = 2.5

 NUSSELT = 70

 FLOW_RATE = 150 ##m3/h typical for a home

ECCHO Technical Overview v1.0

 Page 43 of 51

The heat flow in the duct is assumed to be turbulent flow to allow use of the Nussel

approximation to estimate the duct surface temperature and resultant heat flux. The

reduction in air temperature impacts the MVHR efficiency. Note efficiency of the MVHR is

measured per PHI.

Go back

Function space cooling

Function win_calc2

This function takes as input the location_climate_data_df and pre-calculates the climate

data table and returns it. This is only a function of the surface ALBEDO = 0.106 and the data

in the climate file.

Function win_calc3

This takes in the location_climate_data_df and precalculated climate data from win_calc2

and windows table to calculate the radiation on the windows and returns the window

radiation with and without shading for winter and summer returning windows_rad. This calls

the Functions shade_calc_winter and shade_calc_summer passing in windows_rad and

absolute value of the latitude.

Function win_calc4

Sums all installed windows to cardinals

Function shade_calc_winter

This function takes in the windows_rad table and the latitude and returns windows_rad with

the windows_rad[“shade factor”].

Function shade_calc_summer

This function takes in the windows_rad table and the latitude and returns windows_rad with

the windows_rad[“shade factor_summer”]

Function win_calc4

Groups and sums the data from windows_rad and calculates the summary data for these

groups. Function inputs windows_rad and outputs windows_sum.

This uses the PHPP defaults of 0.95 for dirt and 0.85 for non-vertical radiation incidence.

windows_sum['Solr irr red ftr'] = windows_sum['Shade'] * windows_sum['Dirt'] *

windows_sum['Non vert rad inc'] * windows_sum['Glz %']

ECCHO Technical Overview v1.0

 Page 44 of 51

windows_sum['Solr irr red ftr_summer'] = 0.9 * windows_sum['Shade_summer'] *

windows_sum['Dirt'] * windows_sum['Glz %']

Note the 0.9 factor is a correction factor for non-scattering glazing as specified in ISO13890

for the solar transmittance of glazed elements.

Function areas_calc2

This function inputs areas, climate, windows, project_data and dwelling_data and then

copies areas table into areas_rad and calculates the solar gain through the opaque

elements returning the values as areas_rad.

The solar aperture is calculated as follows (ISO13790 annex E):

areas_rad.loc[(areas_rad["u_value"] != 0), "Solar apt"] = (

 1 / (EXTEM * HRAD + HKON) / (1 / areas_rad["u_value"] - RE + 1 / (EXTEM * HRAD + HKON))

 * EXTABS * REDFACSH * areas_rad["area_m2"])

Go back

Function internal_heat_gain_calc (see main_calc.py)

This function inputs the dwelling_data and variable custom and checks if it is “default”,

“nzs4218”, “building_code” or not set. This then returns the internal_heat_gain as a value

or None if custom was not set.

In Homestar default mode ECCHO calculates internal heat gains for the purposes of

calculating winter annual heat demand as follows:

internal_heat_gain = 2.1 * dwelling_data.loc[0, "building_TFA"] + 50

For nzs4218 or building_code mode ECCHO calculates the internal heat gain based on

nzs4218 values converted to a steady state value. This also accounts for a 100W heat gain

from the DHW if the cylinder is located inside.

if dwelling_data.loc[0, "building_TFA"] > 50:

 internal_heat_gain = 4.1 * dwelling_data.loc[0, "building_TFA"] + 138.6 * 3 / (7 * 24)

 else:

 internal_heat_gain = 4.1 * dwelling_data.loc[0, "building_TFA"] + 138.6 * (

 150 / dwelling_data.loc[0, "building_TFA"]) / (7 * 24)

 internal_heat_gain = (internal_heat_gain + 100 / dwelling_data.loc[0, "building_TFA"]

 if dwelling_data.loc[0, "cyl_location"] == "Inside"

 else internal_heat_gain)

ECCHO Technical Overview v1.0

 Page 45 of 51

When in custom mode the internal heat gains are calculated from first principles based on

the custom occupancy and chosen appliances as follows (note if custom_occupancy set to

zero so is custom_internal_heat_gain).

Function ihg (see aux_lighting.py)

This function inputs the appliances, location_climate_data_df, dwelling_data, pipe_gains,

lighting_demand and then returns the custom_internal_heat_gain. This accounts for DHW

impacts and appliance water usage impacts.

custom_internal_heat_gain = max(2.1 * dwelling_data.loc[0, 'building_TFA'] + 50,

 appliances['internal heat gains'].values.sum() + lighting_demand / 8760 + dwelling_data.loc[0, 'custom_occupancy'] *

100 / 8.76)

 if dwelling_data.loc[0, "custom_occupancy"] == 0: custom_internal_heat_gain = 0

Go back

Function sumvent

This function calculate summer air change rate based on window openings. Inputs are

vent_data and tfa (from dwelling_data); the function returns the resultant_air_change,

which is used in the overheating calculation only. Note although the windows are assumed

to be on the same level (ie no stack effect between windows) the temperature difference is

assumed to cause ventilation across the height of the window itself.

Note 'win_securrity' is a numeric set in the UI to correct for time windows are open.

 g = 9.81 #accel due to gravity

 wind_vel = 1 #m/s

 avg_temp = 298 #K

 temp_diff = 4 #K

 dim_less = 0.02 #Volume flow rate due to wind pressure

 fD = 0.7

 Cd = 0.61

 DCp = 0.3

 for x in range(1,4):

 if x == 3:

 if vent_data.loc[0, 'win1_width'].sum() > 0 and vent_data.loc[0, 'win1_width'].sum() > 0:

 clear_opening.append(1 / (1 / clear_opening[0] ** 2 + 1 / clear_opening[1] ** 2) ** 0.5)

 vol_flow_thermal.append(0) #assume no height diff between window groups

 vol_flow_wind.append(Cd * clear_opening[x-1] * (DCp)**0.5 * wind_vel * 3600)

 else:

 clear_opening.append(0)

ECCHO Technical Overview v1.0

 Page 46 of 51

 vol_flow_thermal.append(0)

 vol_flow_wind.append(0)

 else:

 clear_opening.append(vent_data.loc[0, f'win{x}_width'].sum() * vent_data.loc[0, f'win{x}_height'].sum())

 vol_flow_thermal.append(1 / 3 * Cd * clear_opening[x-1] * (g * vent_data.loc[0, f'win{x}_height'].sum() * temp_diff /

avg_temp) ** 0.5 * 3600)

 vol_flow_wind.append(dim_less * clear_opening[x-1] * wind_vel * 3600)

 total_vol_flow.append((vol_flow_thermal[x-1] ** 2 + vol_flow_wind[x-1] ** 2) ** 0.5)

 resultant_air_change = max(total_vol_flow[0] + total_vol_flow[1],

 total_vol_flow[2]) / (vent_data.loc[0, 'room_height'].sum() * tfa) * vent_data.loc[0, 'win_securrity'].sum() / 24

Go back

Function calculate_u_value

The assembly U-value is calculated in calculate_u_value. This function inputs the

climate_type, new_assembly_data and new_assembly_lambda data and returns a

new_assembly_Uval. This is hard coded for three sections each with one percentage (as is

PHPPv9.6a).

The external and internal surface thermal resistances are automatically applied as follows:

intRsi_values = {'heating_predominant': {

 'Roof': 0.1, 'Wall': 0.13, 'Floor': 0.17},

 'temperate': {'Roof': 0.13, 'Wall': 0.13, 'Floor': 0.13},

 'cooling_predominant': {'Roof': 0.17, 'Wall': 0.13, 'Floor': 0.1}}

 extRsi_values = {'Outdoor air': 0.04, 'Ground': 0}

Go back

Function win_U_value

As shown in the code snippet below this calculation is executed by the win_U_value

function in the Windows.py module which takes as input the glazing type and frame type,

the height and width of the window and how many sides of the window (sides_adjacent)

have internal mullions. The function returns the U value as per ISO10077-1 including the

window installation PSI value, the U value with no install psi value (as per Building Code)

and the percentage of the window that is glazed (glz_per).’)

FROM win_U_value(glazing_type, frame_type, width, height, sides_adjacent)

a_window = width * height

a_glazing = max(0,((width - (frame_type.frame_width * 2)) * (height - (frame_type.frame_width * 2))))

glz_per = (a_glazing / a_window) * 100

l_window = (width + height) * 2 * (1 - sides_adjacent/4)

l_glazing = (width - (frame_type.frame_width * 2)) * 2 + (height - (frame_type.frame_width * 2)) * 2

ECCHO Technical Overview v1.0

 Page 47 of 51

u_value = (a_glazing * glazing_type.U_glazing

 + (a_window - a_glazing) * frame_type.U_frame

 + l_window * frame_type.frame_install_psi

 + l_glazing * frame_type.frame_psi) / a_window

u_value_no_install_psi = (a_glazing * glazing_type.U_glazing

 + (a_window - a_glazing) * frame_type.U_frame

 + l_glazing * frame_type.frame_psi) / a_window

Function win_calc

The window glazing area is set from the window area and glz_per from the win_U_value

function and the window orientation and angle set from the areas they are installed in. The

windows are then grouped by orientation or if angle to horizontal is less than 30 degrees

into Horizontal windows. This puts all windows into one of these five groups. This function

inputs the window and areas and returns the windows table modified.

Go back

Function occupancy (see main_calc.py)

This function inputs the CFA and returns the occupancy.

ECCHO includes a default occupancy based on Conditioned Floor Area (CFA). This is

calculated as follows:

return 1 + 1.9 * (1 - math.exp(-0.00013 * (tfa - 7) ** 2)) + 0.001 * tfa

Future versions after TBD will use an alternate default occupancy.

Number of occupants = 0.0168 * CFA + 0.5788

Note that in custom mode any manual occupancy can be entered.

Go back

Function location

This function inputs the country and then reads in the climate data for that country from

Climate_data.csv and returns a location_list containing location and climate_zone.

Function climate_data

ECCHO Technical Overview v1.0

 Page 48 of 51

This function pulls the climate data from the Climate_data.csv file and dwelling_data and

then formations it into location_climate_data_df. Note that the Climate_data.csv file already

has the data mirrored about the equator as it is in PHPPv9.6a. This includes altitude

adjustment using

height_adj = (0.6 / 100 * (dwelling_data.loc[0, "height_above_sea"] - location_climate_data.loc[0, "Sea level m"]))

Function project_climate_type

This function takes as input the project_climate_file and uses the monthly temperatures to

return the climate type.

Go back

Orientation of building and site to climate

Function areas_calc1

This function adjusts the input areas orientation to allow for the user to rotate the building.

By adding the user-entered orientation to the areas orientation and then correcting to

between 0 and 360 degrees, the building is rotated. Then the areas are mirrored about the

equator for all dwellings with a latitude less than zero:

if float(latitude) < 0:

 areas["dev_nth"] = areas["dev_nth"].apply(lambda x: 180 - x if 180 - x >= 0 else 180 - x + 360)

Note this is not the same as simply adding 180 degrees as the building is mirrored about

the equator so walls facing east stay east and so on.

Go back

Function hot_water_calc

This function inputs shower_df, location_climate_data_df, dwelling_data, appliance_dhw

and returns hot_water_data including the appliance_dhw per sqm of CFA (or TFA).

The annual kWh for generation of hot water is then calculated from the daily demand and

the temperature difference:

hot_water_data['daily demand'] = hot_water_data['Time of use per use'] \

 * hot_water_data['Flow rate'] * hot_water_data['Amount of uses according to type of use'] *

hot_water_data['occupancy']

 hot_water_data['annual kWh'] = hot_water_data['daily demand'] * (hot_water_data['Useful temperature'] -

avg_cold_water_temp) * 365 * 4.19 / 3600

ECCHO Technical Overview v1.0

 Page 49 of 51

Finally, the appliance_dhw is added and the sum divided by the reference area CFA (TFA

in the code). Note appliance_dhw is calculated in the custom_appliances function.

Function hot_water_storage

This function calculates the storage and pipe losses for DHW. This function inputs the

location_climate_data_df, dwelling_data pulling in the ‘cylinder_size’, fitting_loss inputs

and cylinder location and returns the storage and pipe losses per reference area. Note that

currently the storage cylinder is hard coded to 60C, hot water flow temperatures to 55C,

external pipe diameter to 0.015m and 6 tap openings per day.

Pipe losses (W/K) are based on an assumed pipe length, which is calculated as follows:

pipe_length (m) = Conditioned Floor Area^(1/3) * tapping_points + 10

...where tapping points = 1+CFA/50.

An additional loss is then included for the fittings and 2m of pipework off the top of any

cylinder (again, if present). This is based on the extent to which these are insulated.

fitting_loss = {'-':0,'Uninsulated':1,'Normal':0.5,'Medium':0.25,'Excellent':0.1}

 standby_loss_rate = heat_loss_rate * (CYLINDER_TEMP - cylinder_ext_temp)

 standby_losses = standby_loss_rate * 8.76 * dwelling_data.loc[0, 'cylinder_qty']

 tapping_points = 1+round(dwelling_data.loc[0, 'building_TFA']/50,0)

 pipe_length = dwelling_data.loc[0, 'building_TFA'] ** (1/3) * tapping_points + 10

 pipe_length_per = pipe_length / tapping_points

 water_vol = math.pi * ((EXT_PIPE_DIA - 0.0045)**2) / 4 * pipe_length_per

 pipe_vol = math.pi * (EXT_PIPE_DIA**2) / 4 * pipe_length_per - water_vol

 heat_loss_per = (1.16 * water_vol + 0.555 * pipe_vol) * (DHW_FLOW_TEMP - dwelling_data.loc[0, 'winter_int_temp'])

 tap_open_per_year_person = TAP_OPENINGS * 365

 pipe_loss = tap_open_per_year_person * heat_loss_per * dwelling_data.loc[0, 'occupancy']

Go back

Function custom_appliances

This function inputs appliances, dwelling_data as well as reading in appliance_data.csv,

appliance_star_rating_data.csv. This function then returns the appliance_elec_demand,

appliance_dhw, appliances. Note the appliance_elec_demand and appliance_dhw are

annual kWh/m2.

The total hot water energy demand from dishwashers and washing machines (if connected

to the domestic hot water supply) is calculated by setting the electricity fraction and then

calculating per the code snippet below. If the DHW connection is set to yes for dishwasher,

ECCHO Technical Overview v1.0

 Page 50 of 51

the ‘electricity fraction’ is set to 0.5, for washing machine to 0.55 and for a washer-dryer

combination machine to 0.8.

 appliances['non elec fraction'] = 1 - appliances['electricity fraction']

 appliances['appliance_non_elec'] = appliances['in_use'] * appliances['frequency'] * appliances['ref quantity'] *

appliances['non elec fraction'] * appliances['Norm demand'] / tfa

 appliance_dhw = appliances.loc[appliances['appliance_type'] != 'Cooker',['appliance_non_elec']].values.sum()

Appliance electrical demand is calculated from:

appliances['appliance_elec_demand'] = appliances['in_use'] * appliances['frequency'] * appliances['ref quantity'] *

appliances['electricity fraction'] * appliances['Norm demand'] / tfa

 appliance_elec_demand = appliances.loc[appliances['appliance_type'] != 'Cooker',

['appliance_elec_demand']].values.sum() + (100 * occupancy) / tfa

Note that the cooktop is the only appliance that allows for non-electricity.

cooker_norm_demand = {'Electricity':0.20,'LPG':0.25,'Natural Gas':0.25}

Also note that the clothes dryer has the utilisation factor set to 0.88 hard coded in this

function to account for some clothes line usage.

Go back

Function lighting_calc

This function inputs the lighting_df and then returns the gross_lighting_demand / CFA

The lighting_watts is calculated for each area group from the quantity of lights and the

lamp_watts. Then the gross_lighting_demand from:

gross_lighting_demand = 365 * (lighting_watts_total['Living areas'] * 2.2 + lighting_watts_total['Bedrooms'] * 1.1

 + lighting_watts_total['Other areas'] * 0.7) / 1000

gross_lighting_demand / self.dwelling_data.loc[0, 'building_TFA']

Go back

Function aux_calc

This function inputs location_climate_data_df, vent_data, vent_calc, mvhr_units and then

returns the aux_demand/CFA.

elec_efficiency = mvhr_units.loc[mvhr_units['description'] == vent_data.loc[0, 'mvhr'], 'elec_efficiency'].values.sum()

 winter_fan_demand = 0.35 * (location_climate_data_df.loc[1:12, 'heating_days'].values.sum() * 24/1000) * elec_efficiency *

vent_calc['Air volume']

 summer_fan_demand = vent_data.loc[0, 'vent_rate'] * (8.76 -

(location_climate_data_df.loc[1:12,'heating_days'].values.sum() * 24/1000)) * elec_efficiency * vent_calc['Air volume']

 boiler_pump_demand = 0 # need to code this, check if central heating and add

 aux_demand = winter_fan_demand + summer_fan_demand + boiler_pump_demand

ECCHO Technical Overview v1.0

 Page 51 of 51

 aux_demand / self.dwelling_data.loc[0, 'building_TFA']

Go back

Function final_energy see final_energy_carbon.py

This function sort all the energy data into end_uses for tabular display and graphing. This

includes adding the refrigerant leakage carbon impact into the total CO2 emissions.

Function set_emissions see models.py class Refrigerant

This reads in the refrig_properties.csv and calculates the co2_emissions from:

refrig_data = pd.read_csv("static/refrig_properties.csv")

 refrig_gwp = refrig_data.loc[int(self.refrig_type),'GWP']

 self.co2_emissions = ((self.leakage_rate/100 * self.system_life + self.eol_loss_rate/100)

 * refrig_gwp * self.refrig_charge) / self.system_life

Go back

